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A B S T R A C T  

This paper deals with two possible definitions of recurrence in measure 

pre~rving systems. A set of integers R is said to be a set of (Poinca~) re- 

currence if, for all measure preserving systems (X, B, ~, T) and any measur- 

able set A of positive measure, there is an r E R such that p ( T r A n A )  > 0. 

R is said to be a set of strong recurrence if, for all measure preserving sy~ 

terns (X, 8,/J, T) and any measurable set A of positive measure, there is an 

e > 0 and an infinite number of elements r of R such that ~(TrAN A) > e 

(see Bergelson's 1985 paper). This paper constructs a set of recurrence R, 

an example of a measure preserving system (X, B,/A, T) and a measurable 

set A of measure 1/2, such that limr_oo:rERp(AnTrA) -- O. In particular 

R is a set of recurrence but not a set of strong recurrence, giving a negative 

answer to a question of Bergelsen posed in 1985. Further, it also constructs 

a set of recurrence which does not force the continuity of positive measures 

and so reproves a result of Bourgain published in 1987. 

1. T h e  c o n s t r u c t i o n  

T h i s  f i rs t  m a k e s  an  a p p r o x i m a t i o n  in a f in i te  p r o d u c t  of  Z2 ( =  {0 ,1} ,  a d d i t i o n  

m o d  2), t h e n  p u t s  b e t t e r  a n d  b e t t e r  a p p r o x i m a t i o n s  t o g e t h e r  in  Z~ ° to  o b t a i n  

an  a p p r o p r i a t e  c o u n t e r e x a m p l e  for  Z ~  ac t ions .  T h i s  is t h e n  t r a n s f e r r e d ,  by  

c o m b i n a t o r i a l  m e t h o d s ,  to  Z.  

* This paper  forms a part  of the author 's  Ph.D. Thesis at the Ohio Sta te  University. 
The  au thor  wishes to thv.nk his advisor,  Professor Bergelson, for suggesting the  
problem of this paper  and for his guidance. 
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Definitions: The following definitions will be used throughout the paper. 

Let G be an abelian group; usually Z, Z~ °, or Zp, in what follows. 

A G ac t ion  on a probability measure space, (X, B, p), is a representation of 

G by measure preserving maps: Tg : X --~ X defined for each 9 E G, i.e., 

TgTh = Tg+h and/Z(A) =/Z(T~A), for all g and h • G, and A E B. 

This is written (X, B,/Z, G) or (X, B,/Z, T) and, where G is understood, is called 

simply a m e a s u r e  p re se rv ing  sys t em.  Often T~ will be written T e. 

Define, for any subset R of G, the function e : [0, 1] ~ [0,1], 

e(a; R) = inf sup #(A n T,.A), 
(X,B,I~,T);I~(A)~_a rER 

where the infimum is taken over all probability measure preserving dynamical 

systems (X, B,/Z, T) upon which the group acts, and sets A of measure at least 

a.  

Let L(R) -- inf{a : e(a; R) > 0}. 

A subset R of G is a se t  o f  (Poincar6) r e c u r r e n c e  if, for all measure preserving 

G actions (X, B,/Z, T) and any measurable set A of positive measure, there is an 

r E R such that/Z(T~A N A) > O. 

R is said to be a set  o f  s t r o n g  r ecu r r ence  if, for all measure preserving 

G actions (X, B/z, T) and any measurable set A of positive measure, there is an 

e > 0 and an infinite number of elements r of R such that/Z(T~A N A) >_ e (see 

[1]). | 

Remark: Poincar~ recurrence may be shown to be equivalent to the requirement 

that e(a; R) be strictly positive on (0,1] as a function of a, i.e. L(R) = O. In 

addition, it may be shown that 

L(R) = sup{a: 3(X, B, #, G) and A : #(A) = a : #(A N TrA) = 0 for all r E R}. 

| 

THEOREM 1.1: There is a set of recurrence R E Z, a measure preserving system 

( X , B , p , T )  and a set A of measure 1/2,/'or which 

Proof: See section 3. 

lira /Z( A 0 Tr A ) = O. 
r---,oo:rER 
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A set S forces the continuity of positive measures ( is F C  +) if every positive 

measure m on the unit circle which has the property: 

lira m^(s) = 0  
s.--*cv~:sES 

is necessarily continuous (i.e. is free of atoms). 

Bourgain [3], on the way to proving a much stronger result, constructs a set of 

recurrence which is not F C  +. It is now possible to construct this in a different 

way. 

THEOREM 1.2 (Bourgain [3]): There is a set of recurrence ~hich is not F C  +. 

Proof." Use the construction of Theorem 1.1 directly. 

Set m to be the positive real measure on the unit circle whose Fourier transform 

is the positive definite sequence m^(n) = p (T"A  n A). 

m has an atom since p(A) > 0 and so the continuity of m is not forced, 

although m^(n) tends to zero along R. 

However R is a set of recurrence, l 

The following lemma allows L to be calculated quite easily in the case of finite 

groups. 

LEMMA 1.3: Let G be a finite abelian group and let R be a subset. 

L^(R) = max{IAl/lGl: G 2 A and A N A + r = 0 for MI r E R}. 

Then L^(R) = L(R). 

Define 

Proof." That  L > L ̂  is obvious since G acts on itself in a measure preserving 

manner, the measure in question being the normalized counting measure. On the 

other hand suppose that  (X, B, p, G) is a measure preserving system, and let A 

be a subset of measure a > L^(R). 

Therefore there is a subset E of G of cardinality greater than a .  IG] for which 

p(flgaETgA) > 0. By the definition of L',  there is an element r of R for which 

E n E + r # 0. This implies that g(A n TrA) > 0 and we are done. l 

2. The Result in Z~  

Here Z ~  is considered to be the collection of all finitely supported functions from 

N to {0, 1} and functional notation is used. 
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Let E be a subset of N. Define Z ~  = {v e Z ~ :  v(n) = O if n ~ E}. Without 

confusion, the set {a,a+ 1,..., b} will be denoted [a, hi, the set {a, a +  1 , . . . ,  b -  1 } 

will be denoted [a, b), etc. 

The upper density of a subset U of Z~ ° is defined as 

d(V) = lim IU n z~l'"]l 

THEOREM 2 . 1 :  There is a set of recurrence R and a measure preserving system 

( X ,  B , I~, Z~ ° ) with a set A, o[ measure equM to 1/2, for which ~( Tr A n A ) tends 

to zero as r tends to i n f ~ t y  Mong R (i.e. for M! ~ > 0 there is an N such that, 

u(T,A n A) > e and r is in R, then ~ is in Z~ I'N) ). 

This theorem clearly produces a set of recurrence which is not a set of strong 

recurrence in Z ~ .  

Note that  it is sufficient to find a subset U of Z~ ° and a sequence of integers 

nk tending to infinity for which 

lira [U n Z~l'~h] I = 1 and lim lim IU N(U + r )  n Z~l'"~l I = 0 .  
t -*co  2 nh 2 r--,oo:rER t-*oo 2n~ 

See Bergelson [1] for the equivalence of recurrence and density intersectivity in 

the case of a general amenable group. 

Consider the product Z 2N, where N is a large integer. 

An element a = (al,  a2, . . .  , a2N) E Z 2N has various interpretations which will 

appear in the work which follows: 

First, a may be considered as a vector in R 2N and, as such, has a n / 1  norm, 

= Ei=las, the sum here being taken in R and not Z2. This imposes a metric 

on Z~ N, namely d(a,b)  = l a -  bll = l a +  b[1. 

Alternatively, a may be thought of as the indicator of a subset A of 

{1, . . .  , 2 N } :  A = {i:  a, = 1}. Clearly, eard(AAB) = d(a,b).  

Given M < N, define R = R(N ,  M)  = {r e z2N : Irll > 2M}. 

Suppose that V is a subset of Z22 N for which V and V + r are disjoint for all 

choices of r E R. Thus for all v and v' in V, Iv - v~ll _< 2M; in other words, the 

diameter of V is at most 2M. A theorem of Kleitman [5] then says that  V can 

have at most ~"]~i~M(2N) elements. 

By the normal approximation of the binomial distribution, this sum is asymp- 

to ( ( M -  as and M both tend to totically equal infinity, \ 
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where ff is the integral of the normal distribution 

Thus, by Lemma 1.3, 

] 1] ¢(x) = ¢(t)dt = ~ ~-"/2dt.  

L ( R ( N , M ) )  < ~ M -  N 

However, if W = { v  E Z~ N : Ivll < N}, then W has 22N-1 elements, yet 

card<W + , n  w)  22N. 

for each choice of r E R, all N,  M and N - M large enough. 

219 

Y 

2N - 2 M  

N - M  

2 M - N  M N 2 M  X 

Fig. 2.1. 

To see this note that  the maximum cardinality is obtained when [r[1 = 2M 

and so, by symmetry,  r indicates the set {1 , . . . ,  2M) ,  without loss of generality. 

An element a of W has s elements inside {1 , . . . ,  2M} and t elements outside, 

when considered as a subset of {1 , . . .  ,2N}.  Thus s + t < N.  However, if a +  r 

is to be in W, then [a + r[1 = 2M - s + t < N. These conditions on s and t are 

also sufficient to put a and a + r in W. In this way 

card(W + r 0 W) = 

-s+t<N-2M 
s,t>_O 
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In diagrammatic form, this sum is the sum of the function 

) 
over the integer pairs to be found in the shaded area of Fig. 2.1. 

Provided that N and N - M both tend to infinity, this sum, normalized by 

dividing by 2 2N, therefore becomes asymptotically equal to the integral of the 

function ¢'(x, y) = ¢(x)¢(y), ¢ being the normal distribution function over the 

shaded area in Fig. 2.2. 

,y 

~x 

N--M M - N  

Fig. 2.2. 

(See Bollobas [2] for a detailed account of the normal approximation of the 

binomial distribution.) 

Since Ct is radially symmetric and has integral 1, this area is equal to 

--- ~ arctan 

for N , M  and N - m large, card (W f3 W + r) ~ 2 2N" ~ / - ~ ,  for all So, r 

in R(N, M )  Thus ~(1/2; R(N, M)) < ~ ,  for all N, M and g - M large 

enough. 
In particular, by letting N / M  tend to 1 and picking N sufficiently large, one 

obtains a subset R of Z~ N for which L(R)  is as small as we wish (so that it is 
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a bet ter  'set of recurrence') but  for which there is a set W, of density 1/2, for 

which 

e = max(card  (W n W + r)/22N : r E R ,}  

i s  as small as we like. Let R ,  be such a sequence of such sets, with associated 

N , , M , , W n , e , ,  etc., for which L ( R , )  and e ,  both tend to zero. 

The following lemma will be important  in combining the properties of these 

sequences into one: 

LEMMA 2.2: Suppose that R and 1~ are subsets of Z~ N and Z~ N' respectively. 

Let 0 be the one element set consisting of the zero vector/n either space. 

Let R" = R × 0 0 0 x R', a subset o[Z~ N+2/v' 

Then L(R") < min{L(R), L(R')}. 

Proo[: This is clear from the definition of L. I 

Decompose Z~ ° as a sum ~i>l  z~ 2 , where b i + l  - bi = 2Ni. 

Let R = URn, where R~ = 0 ~ 0 ~ . . .  ~ R n  ~ ' " , n  _> 1. 

Let W(n,O) = 0 ~ 0 ~ . . . ~ W , ~ . . .  and W(n,  1 ) = 0 ( ~ 0 ~ - . . ( ~ W , C ~  .--. In 

these expressions, the non-zero entry appears in the n th  place. 

Let U be the set UK, o EieKW(i,  s(i)), where the union is taken over all finite 

sets K of integers and functions s : K ---, {0, 1), such that ]s[1 = E , e K s ( n )  is 

even. 

(a) Calculation of the density of U: 

d= lU n Z ""ll- 
lrt -I~O0 2 ~ 

> lira IUnZ~l'b'+')l 
- -  k--*oo 26J'+ t-1 

1 

2 

The last equality derives from the fact that  

S~ = I U ~ W(i,s(i))l, 
K,m iEK 

the union being taken over all subsets K of [1, k] and s : K --+ {0, 1}, with even 

!1 norm, may be rewritten 

Sk = l u ~ W(i,s(i))l, 
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the union now being taken over all s :  [1, k I --* {0,1} with even '1 norm. 

But each disjoint sum ~x<~<kW(i, s(i)) has cardinality exceeding 2b'+ *-k-x, 

and so the union over the 2 k-1 choices of s yields a value for Sk in excess of 

2 bk+'-2. But Sk is equal to [U N Z~l'bk+l) I and so we are done. 

(b) The upper density of U N U + r: 

7.[bk'b~+t) By construction, the upper density Suppose that  r is in R~ = R N ~2 

of U N U + r is bounded above by the number 

IW(k,0) n (W(k,0)  + r)[ [W(k,1) n (W(k,1)  + r)J 
2b~+x-bk -- 2bk+l--bh = ek. 

Proof of Theorem 2.1: R, constructed above, will do: 

It is a set of recurrence, because, if a > 0, then there is an n such that  

L(Rn) < a. Therefore e(a; R) >_ e(a; R , )  > O. 

However, 

lim max 26~+~_ 1 : r E R N Z~ b = lim ek = 0 
k---.oo k---.oo 

and yet 

lim IU N Z~l'bJ+l) I _ 1 
j--*oo 2bi+t -1 2 

So we are done by the observation before. | 

3o 

This section will show how to adapt the example in Z~ ° above to give a similar 

example in Z, and so prove Theorem 1.1. The construction is fairly general, 

however, and gives rise to an easy exchange of properties between constructions 

in Z~'  and Z. 

First some definition8 which will make the adaptation easier to describe. 

A subset R of Z~ ° is said to be well s e p a r a t e d  if there are integers bl < b2 < 

• .. and R1, R2, . . . ,  with Z~ b''b'+l) D_ R~ and R = URn, where R~ = 0 • 0 ~ . . .  

Ri ~ "... 

Note that the set R constructed in section 2 is well separated. 

Let pi be a sequence of integers, yet to be defined, with the properties: pl = 1, 

and 2pilpi+l for all i > 0. 

For a given p, let 

fv(m) = { O 1 if O < m < p mod 2p, 
if p < m < 2p rood 2p, 
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defined for all m E Z. Let N be chosen large and let f : Z2pN --* Z N be defined: 

f(m) = (h,(m), h2(m),. . . ,  h~(m)). 

Let s denote a function {1 , . . . ,  N} --* {1 , -1} .  

Given s, define g, : Z g --+ Z2w by 

gs(ai)= E s(i)aipi. 
a<_iSN 

Given subsets W and R of Z~ ,  define 

w ^ = f - ' ( w )  and R* =,:~,,~ ..... 2~__.~_,,~g,(R) 

where the union is over all possible choices of sign function s. 

Let Pi be a sequence of integers, yet to be determined. 

Let d(W) be the density of a subset W of a finite group (there will be no doubt 

which group this is in the context). 

Let R be a subset of this group and define 

e(W; R) = max{d(W r3 W + r ) :  r 6 R}. 

LEMMA 3.1: There is an absolute constant c so that, i f W  and R are subsets of 

Z N and N is finite, the following hold: 

(1) e(w'; n*) < e(w; R) + c. d(W) ~ w2M , • ~ pi+, / 
rER i:r~=l 

(2) L(R*) <_ L(R). 

Note that this then proves Theorem 1.h 

Proof  of Theorem 1.1: By the Furstenberg correspondence (see Furstenberg [4]), 

it is sufficient to prove that there is a set of recurrence, S in Z, a sequence of 

intervals [1, P,]  and a set V with the following properties: 

lim I V n [ 1 , P . l l  = ! and lim lira Ivn(v+~)nI1,P.]l = o .  
,-.oo p, 2 ,eS:s-*oo ,-*oo p. 

It will turn out that suitable choices will be S = R*, V = U ̂  and P,, = 2p,,pi 

having been picked sufficiently well. 
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Note again that  the R constructed in section 2 is well separated, i.e. there 

is a sequence b, < b2 < . . .  of integers, and a sequence of sets Ri such that  

Z~ b''b~+') D_D_ R~, and R = URn. 
Let a ( . ,  m) = U,.>,>. R~ and U(.,  m) = U n Z~ 6.'b'). Therefore, Lenuna 3.1 

says that 

e (U( . , , . ) .R( . ,m) ' )  < e(U(., m); R(.,  m)) + ~ ~ 2~lrl ~ • P' 
r6R(,,m) i: '-----1 ~ 

and L(R(n,m)')  < L(R(n,m)), where the densities etc. axe calculated with 

respect to the group Z~ b"'b~'). 
If R is a set of recurrence, then L(R(1,m)) tends to 0. Thus L(R*), being 

dominated by L(R(1,m)*) and hence by L(R(1,m)) for all m, equals zero. So 

R* is a set of recurrence. 

However, R is also well separated and so the second term in this expression is 

dominated by 

which, bi having been determined, can be made to tend to zero as n tends to 

infinity, with a careful choice of Pi. 

Thus if r* is in R(n, n + 1)*, then r* = go(r) for some r fi R(n, n + 1) and sign 

function s. 

IU" n (u" + r') n [1, 2p.,]l _< d(U(1,m) n (UO,m) + 0) + ~. 
2p,, 

= d(U(n, n + 1) n (U(n, n + 1) + r)) + ~ ,  

which tends to 0 as n tends to infinity by the construction of U in section 2. 

Further, 

I U ' n  [1,2p,.]l = d(U(1,m)) 1 
2p,, = 2 '  

by the homogeneity of the ^ construction. So we are done. | 

P roof  of Lemma 3.1: Let Pi, 1 < i < N,  be determined and construct R* and 

W ̂  6 Z2pN from R and W 6 Z ~  as in section 2. 
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To prove Lemma 3.1 (1) it is sufficient to prove the following inequality which 

quantifies the degree of the approximation constructed above: 

(A) 

for all r E Z~,Z2 N _D W, and s :  { 1 , . . . , N }  --* { -1 ,1} ,  where c is an absolute 

constant. 

To complete the proof of Lemma 3.1(1) from here, note that  d(W) = d(W ~) 

for all subsets, W, of Z ~  (the densities are taken over two different, finite, sets, 

without confusion). Thus 

e(W; R) > d(W 13 W + r) = d((W + r tl W)  ̂ ) = d((W + r y  tq W') ,  for all r E R. 

It follows from (A) that, for all choices of r E Z2 N and s, a sign function, 

( ,) d(W" n (W ̂  + g,(~))) -< ~(W; R) + ~. d(W). 9. 'M' • ~ ,  ~ 
i:riffil 

( ,) _< ~(w; R) + ~. d(W) F_, 2,M,. ~ 
rER i : r i=l  

for all r and s, and so e(W'; R*) is dominated by the right hand side of this 

expression and part (1) of the lemma is proved. 

It remains to prove (A). First examine the case W = {0}: 

It is easy to check that, for each i < N, 

I ( / - ' (0 )  + p~)a(S- ' (0)  - pdl = SpNp~ 
2Npi+l" 

Thus, if s and t are two sign functions: {1 ,2 , . . .  ,N}  ~ {1 , -1} ,  then 

(B) I(f-*(0) + g,(r))A(f-*(O) + gt(r))l = 8pN2 -N ~ P__i 
Pi+l 

where J is the set of indices i for which ri = 1 and t(i) ~ s(i). 

For W = {w} in general, note that f - t ( w )  = f - l (O)  + gl(w). Further, if s is 

a sign function and r E Z~ ,  then 

gs(r) + g,(r)  = gs,(r + w) + 2gz(r') and gt(r) + gl ( r )  = gt,(r + w) + 2g,(r"), 
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where, for example: 

A. H. F O R R E S T  lsr .  J .  Ma th .  

i I~iW i if s(i) = 1, 
ri = otherwise, 

and 
fs( i)  i f w i = O a n d r i = l ,  st(i) 

1 otherwise; 

r" and t' are defined similarly. 

Thus 

I ( f - l (w)  + gs(r))A(f-l(w) + gt(r))l 

<l(f-l(o) + g,,(r + w) + 2gl(r'))A(f-~(0) + g,,(r + w))l 

+ 1(/-1(0) + g,,(~ + w))a(f-~(0) + g,,(~ + w))l 

+ I(/-1(0) + g,,(," + w))&(f-l(0) + g,,(," + ~) + 291(,'"))1 
<--8pN2-N E Pi + 8pN2-N E Pi + 8pN2-N E p__...~i 

i : r~=l Pi+l Pi+l Pi+l " i:ri =1 i:r~i ~ =1 

The first summand comes from the fact that 

I ( f - l (0)  + g,,(r + w) + 2g~(r')):,(f-l(O) + g,'(" + w))l 

= I(/-1(0) + 2gl(r')):'(/-l(O))l 

= I(f-x(0) + g~(~')) : ' ( /-a(0) - gl(r '))l 

= 8pN2-N E P-!i 
i : ~ = 1  Pi+l 

from (B) and the third likewise. The middle summand comes from considering 

the set Y of indices on which ri + wi = 1 and t'(i) # s'(i) which, by construction, 

is contained in the support of r. 

Note that the supports of r ~ and r" are both contained in the support of r. 

Therefore, 

] ( / - l (w)  T g,(r))A(f-l(w) -F gt(r)) I <_ 24pN2 -N P7+1" 
i: "--1 

For W more general, observe that W ̂  = f - l (W)  is a disjoint union of sets of 

the form f- l(w),  with w E W, and so (W^+gs(r))A(W^+gt(r)) is contained in 

U ( ( f - l ( w )  + gs(r))A(f-l(w) + gt(r))), a set of size less than 
wEW 

24pN2-NIwI Y~ (Pi/P,+I). 
i:ri=l 
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Its density is, therefore, at most 12d(W)Ei:r,=l(pdpi=l) and (A) is verified and 

part  (1) of the lemma completed. 

To prove Lemma 3.1(2) let Z2rN act on a probability space, (X ,B ,g ) ,  in a 

measure preserving manner and let A be a measurable subset of X of measure a. 

Let (Y, :D, u) = (X, B, #) x (Z~ ,  normalized counting measure) define a prob- 

ability space. Z ~  acts on Y in a measure preserving manner by permuting the 

second coordinate: 

= (=,  v + 

Let B be the subset of Y defined by B = {(x,v)  : x E T~'(V)A}, a set of 

measure a. 

For every e > 0, there is an r in R such that  

v(B n SrB) > e(a; R) - ~. 

This implies that  there is a v such that 

p(Tg'(V)A N Tg'(v+r)A) > e(a; R) - ~. 

This left hand side equals p(A N T(g~("+r)-gl("))A) which equals, in turn, p(A f3 
Tg'( ' )A) where 

f I if vi = 0 or ri = 0, 
8(i)  

- 1  otherwise. 

Thus e(a; R*) > e(a; R) - ~ ;  ~ being arbitrary, we are done. 

The whole theorem is now proved. I 

4. Conc lus ion  

The question of Bergelson dealt with in this paper was well known for some time 

and it was not obvious which way it would be decided. Indeed, all the previous 

examples of sets of recurrence displayed very strong recurrence properties, namely 

that  

e(a; R f3 [n, c¢)) = a 2 for all natural numbers n. 

This paper shows that this need not happen always and gives a fairly tangible 

construction of an exception. 

The author believes that the above techniques, which were inspired by the pa- 

per of Kriz [6], could continue to be quite fruitful in the production of demanding 

examples in combinatorial ergodic theory. 
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